Skip to content

trestle.core.generators

trestle.core.generators ¤

Capabilities to allow the generation of various oscal objects.

Attributes¤

TG = TypeVar('TG', bound=OscalBaseModel) module-attribute ¤

logger = logging.getLogger(__name__) module-attribute ¤

sample_base64 = Base64(filename=const.REPLACE_ME, media_type=const.REPLACE_ME, value=sample_base64_value) module-attribute ¤

sample_base64_value = 0 module-attribute ¤

sample_date_value = '2400-02-29' module-attribute ¤

sample_method = Methods.EXAMINE module-attribute ¤

sample_observation_type_valid_value = ObservationTypeValidValues.historic module-attribute ¤

sample_task_valid_value = TaskValidValues.milestone module-attribute ¤

type_base64 = type(sample_base64) module-attribute ¤

Classes¤

Functions¤

generate_sample_model(model, include_optional=False, depth=-1) ¤

Given a model class, generate an object of that class with sample values.

Can generate optional variables with an enabled flag. Any array objects will have a single entry injected into it.

Note: Trestle generate will not activate recursive loops irrespective of the depth flag.

Parameters:

Name Type Description Default
model Union[Type[TG], List[TG], Dict[str, TG]]

The model type provided. Typically for a user as an OscalBaseModel Subclass.

required
include_optional bool

Whether or not to generate optional fields.

False
depth int

Depth of the tree at which optional fields are generated. Negative values (default) removes the limit.

-1

Returns:

Type Description
TG

The generated instance with a pro-forma values filled out as best as possible.

Source code in trestle/core/generators.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
def generate_sample_model(
    model: Union[Type[TG], List[TG], Dict[str, TG]], include_optional: bool = False, depth: int = -1
) -> TG:
    """Given a model class, generate an object of that class with sample values.

    Can generate optional variables with an enabled flag. Any array objects will have a single entry injected into it.

    Note: Trestle generate will not activate recursive loops irrespective of the depth flag.

    Args:
        model: The model type provided. Typically for a user as an OscalBaseModel Subclass.
        include_optional: Whether or not to generate optional fields.
        depth: Depth of the tree at which optional fields are generated. Negative values (default) removes the limit.

    Returns:
        The generated instance with a pro-forma values filled out as best as possible.
    """
    effective_optional = include_optional and not depth == 0

    model_type = model
    # This block normalizes model type down to
    if utils.is_collection_field_type(model):  # type: ignore
        model_type = utils.get_origin(model)  # type: ignore
        model = utils.get_inner_type(model)  # type: ignore
    model = cast(TG, model)  # type: ignore

    model_dict = {}  # type: ignore
    # this block is needed to avoid situations where an inbuilt is inside a list / dict.
    # the only time dict ever appears is with include_all, which is handled specially
    # the only type of collection possible after OSCAL 1.0.0 is list
    if safe_is_sub(model, OscalBaseModel):
        for field in model.__fields__:  # type: ignore
            if model_type in [OscalVersion]:
                model_dict[field] = OSCAL_VERSION
                break
            if field == 'include_all':
                if include_optional:
                    model_dict[field] = {}
                continue
            outer_type = model.__fields__[field].outer_type_  # type: ignore
            # next appears to be needed for python 3.7
            if utils.get_origin(outer_type) == Union:
                outer_type = outer_type.__args__[0]
            if model.__fields__[field].required or effective_optional:  # type: ignore
                # FIXME could be ForwardRef('SystemComponentStatus')
                if utils.is_collection_field_type(outer_type):
                    inner_type = utils.get_inner_type(outer_type)
                    if inner_type == model:
                        continue
                    model_dict[field] = generate_sample_model(
                        outer_type, include_optional=include_optional, depth=depth - 1
                    )
                elif is_by_type(outer_type):
                    model_dict[field] = generate_sample_value_by_type(outer_type, field)
                elif safe_is_sub(outer_type, OscalBaseModel):
                    model_dict[field] = generate_sample_model(
                        outer_type, include_optional=include_optional, depth=depth - 1
                    )
                else:
                    # Handle special cases (hacking)
                    if model_type in [Base64Datatype]:
                        model_dict[field] = sample_base64_value
                    elif model_type in [Base64]:
                        if field == 'filename':
                            model_dict[field] = sample_base64.filename
                        elif field == 'media_type':
                            model_dict[field] = sample_base64.media_type
                        elif field == 'value':
                            model_dict[field] = sample_base64.value
                    elif model_type in [DateDatatype]:
                        model_dict[field] = sample_date_value
                    # Hacking here:
                    # Root models should ideally not exist, however, sometimes we are stuck with them.
                    # If that is the case we need sufficient information on the type in order to generate a model.
                    # E.g. we need the type of the container.
                    elif field == '__root__' and hasattr(model, '__name__'):
                        model_dict[field] = generate_sample_value_by_type(
                            outer_type, str_utils.classname_to_alias(model.__name__, AliasMode.FIELD)
                        )
                    else:
                        model_dict[field] = generate_sample_value_by_type(outer_type, field)
        # Note: this assumes list constrains in oscal are always 1 as a minimum size. if two this may still fail.
    else:
        if model_type is list:
            return [generate_sample_value_by_type(model, '')]  # type: ignore
        if model_type is dict:
            return {const.REPLACE_ME: generate_sample_value_by_type(model, '')}  # type: ignore
        raise err.TrestleError('Unhandled collection type.')
    if model_type is list:
        return [model(**model_dict)]  # type: ignore
    if model_type is dict:
        return {const.REPLACE_ME: model(**model_dict)}  # type: ignore
    return model(**model_dict)  # type: ignore

generate_sample_value_by_type(type_, field_name) ¤

Given a type, return sample value.

Includes the Optional use of passing down a parent_model

Source code in trestle/core/generators.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def generate_sample_value_by_type(
    type_: type,
    field_name: str,
) -> Union[datetime, bool, int, str, float, Enum]:
    """Given a type, return sample value.

    Includes the Optional use of passing down a parent_model
    """
    # FIXME: Should be in separate generator module as it inherits EVERYTHING
    if is_enum_method(type_):
        return sample_method
    if is_enum_task_valid_value(type_):
        return sample_task_valid_value
    if is_enum_observation_type_valid_value(type_):
        return sample_observation_type_valid_value
    if type_ is Base64:
        return sample_base64
    if type_ is datetime:
        return datetime.now().astimezone()
    if type_ is bool:
        return False
    if type_ is int:
        return 0
    if type_ is float:
        return 0.00
    if safe_is_sub(type_, ConstrainedStr) or (hasattr(type_, '__name__') and 'ConstrainedStr' in type_.__name__):
        # This code here is messy. we need to meet a set of constraints. If we do
        # TODO: handle regex directly
        if 'uuid' == field_name:
            return str(uuid.uuid4())
        # some things like location_uuid in lists arrive here with field_name=''
        if type_.regex and type_.regex.pattern.startswith('^[0-9A-Fa-f]{8}'):  # type: ignore
            return const.SAMPLE_UUID_STR
        if field_name == 'date_authorized':
            return str(date.today().isoformat())
        if field_name == 'oscal_version':
            return OSCAL_VERSION
        if 'uuid' in field_name:
            return const.SAMPLE_UUID_STR
        # Only case where are UUID is required but not in name.
        if field_name.rstrip('s') == 'member_of_organization':
            return const.SAMPLE_UUID_STR
        return const.REPLACE_ME
    if hasattr(type_, '__name__') and 'ConstrainedIntValue' in type_.__name__:
        # create an int value as close to the floor as possible does not test upper bound
        multiple = type_.multiple_of if type_.multiple_of else 1  # type: ignore # default to every integer
        # this command is a bit of a problem
        floor = type_.ge if type_.ge else 0  # type: ignore
        floor = type_.gt + 1 if type_.gt else floor  # type: ignore
        if math.remainder(floor, multiple) == 0:
            return floor
        return (floor + 1) * multiple
    if safe_is_sub(type_, Enum):
        # keys and values diverge due to hypens in oscal names
        return type_(list(type_.__members__.values())[0])  # type: ignore
    if type_ is str:
        if field_name == 'oscal_version':
            return OSCAL_VERSION
        return const.REPLACE_ME
    if type_ is pydantic.v1.networks.EmailStr:
        return pydantic.v1.networks.EmailStr('dummy@sample.com')
    if type_ is pydantic.v1.networks.AnyUrl:
        # TODO: Cleanup: this should be usable from a url.. but it's not inuitive.
        return pydantic.v1.networks.AnyUrl('https://sample.com/replaceme.html', scheme='http', host='sample.com')
    if type_ is list:
        raise err.TrestleError(f'Unable to generate sample for type {type_}')
    # default to empty dict for anything else
    return {}  # type: ignore

is_by_type(model_type) ¤

Check for by type.

Source code in trestle/core/generators.py
171
172
173
174
175
176
def is_by_type(model_type: Union[Type[TG], List[TG], Dict[str, TG]]) -> bool:
    """Check for by type."""
    rval = False
    if model_type == type_base64:
        rval = True
    return rval

is_enum_method(type_) ¤

Test for method.

Source code in trestle/core/generators.py
65
66
67
68
69
70
71
72
73
74
def is_enum_method(type_: type) -> bool:
    """Test for method."""
    rval = False
    if utils.get_origin(type_) == Union:
        args = typing.get_args(type_)
        for arg in args:
            if "<enum 'Methods'>" == f'{arg}':
                rval = True
                break
    return rval

is_enum_observation_type_valid_value(type_) ¤

Test for observation type valid value.

Source code in trestle/core/generators.py
89
90
91
92
93
94
95
96
97
98
def is_enum_observation_type_valid_value(type_: type) -> bool:
    """Test for observation type valid value."""
    rval = False
    if utils.get_origin(type_) == Union:
        args = typing.get_args(type_)
        for arg in args:
            if "<enum 'ObservationTypeValidValues'>" == f'{arg}':
                rval = True
                break
    return rval

is_enum_task_valid_value(type_) ¤

Test for task valid value.

Source code in trestle/core/generators.py
77
78
79
80
81
82
83
84
85
86
def is_enum_task_valid_value(type_: type) -> bool:
    """Test for task valid value."""
    rval = False
    if utils.get_origin(type_) == Union:
        args = typing.get_args(type_)
        for arg in args:
            if "<enum 'TaskValidValues'>" == f'{arg}':
                rval = True
                break
    return rval

safe_is_sub(sub, parent) ¤

Is this a subclass of parent.

Source code in trestle/core/generators.py
59
60
61
62
def safe_is_sub(sub: Any, parent: Any) -> bool:
    """Is this a subclass of parent."""
    is_class = inspect.isclass(sub)
    return is_class and issubclass(sub, parent)

handler: python